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Changes in Resting State Effective 
Connectivity in the Motor Network 
Following Rehabilitation of Upper 

Extremity Poststroke Paresis
G. Andrew James, Zhong-Lin Lu, John W. VanMeter, K. Sathian, Xiaoping P. Hu, and Andrew J. Butler

Background: A promising paradigm in human neuroimaging is the study of slow (<0.1 Hz) spontaneous fl uctuations in 
the hemodynamic response measured by functional magnetic resonance imaging (fMRI). Spontaneous activity (i.e., resting 
state) refers to activity that cannot be attributed to specifi c inputs or outputs, that is, activity intrinsically generated by the 
brain. Method: This article presents pilot data examining neural connectivity in patients with poststroke hemiparesis before 
and after 3 weeks of upper extremity rehabilitation in the Accelerated Skill Acquisition Program (ASAP). Resting-state fMRI 
data acquired pre and post therapy were analyzed using an exploratory adaptation of structural equation modeling (SEM) 
to evaluate therapy-related changes in motor network effective connectivity. Results: Each ASAP patient showed behavioral 
improvement. ASAP patients also showed increased infl uence of the affected hemisphere premotor cortex (a-PM) upon 
the unaffected hemisphere premotor cortex (u-PM) following therapy. The infl uence of a-PM on affected hemisphere 
primary motor cortex (a-M1) also increased with therapy for 3 of 5 patients, including those with greatest behavioral 
improvement. Conclusions: Our fi ndings suggest that network analyses of resting-state fMRI constitute promising tools for 
functional characterization of functional brain disorders, for intergroup comparisons, and potentially for assessing effective 
connectivity within single subjects; all of which have important implications for stroke rehabilitation. Key words: effective 
connectivity, fMRI, hemiparesis, motor cortex, physical therapy, resting state, structural equation modeling

According to the American Heart Association 
and the Centers for Disease Control and 
Prevention, stroke continues to be the 

third leading cause of death and is the leading 
cause of severe, long-term disability in the United 
States.1 Every year, approximately 700,000 people 
suffer a stroke. Many of these survivors will have 
compromised ability to use their hemiparetic 
upper extremity in activities of daily life.

An understanding of the complex neural inter-
actions underlying motor function may improve 
treatment effi cacy. Toward this aim, neuroimaging 
has greatly enhanced our understanding of the 
motor system. Early positron emission tomography 
(PET) studies in humans have implicated (to 
varying extents) the sensorimotor cortex, premotor 
cortex, supplementary motor area, superior 
parietal cortex, striatum, and cerebellum in 
motor execution, planning, and learning.2–5 Over 
the past decade, functional magnetic resonance 
imaging (fMRI) has improved upon this corpus 
of knowledge with fi ner anatomic and temporal 
resolution. For example, fMRI has localized the 
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region responsible for motor output of the hand to 
a distinct anatomic landmark along the precentral 
gyrus now known as the hand knob.6

Connectivity Analyses

Early neuroimaging analyses emphasized the 
magnitude or reliability of neural activation during 
a task. Height statistics (such as t tests) comparing 
activation magnitudes across conditions are 
important for determining what brain regions 
are activated during a task. Unfortunately, these 
statistics neglect the rich temporal information 
offered by fMRI. Using just these comparisons, it 
is diffi cult to determine if two neural regions are 
acting in concert as part of a single network or 
independently as components of two concurrent 
yet separate networks. An excellent example 
of this ambiguity lies in early motor learning 
neuroimaging research, where the contribution 
of various neural regions to motor execution, 
planning, and learning was diffi cult to tease apart 
using height statistics alone.2–5

Connectivity analyses offer additional informa-
tion for resolving this quandary. While height 
statistics can determine what regions are involved 
in a task, connectivity analyses can determine how 
these regions interact. Functional connectivity 
can be inferred from the temporal correlation 
between activity in various brain regions. If the 
timecourses for regions A and B are consistently 
correlated during a task, then A and B are 
presumed to be components of the same network. 
Region C may also be activated during the task 
but is presumed to be part of a different network 
if not correlated with A or B. For example, Toni et 
al7 used functional timecourses of motor regions 
during a motor learning paradigm to determine 
what regions were involved in different stages 
of learning. Their graphical depictions of left 
dorsolateral prefrontal cortex, anterior cingulate, 
and left premotor cortex timecourses show strong 
correlation (particularly when contrasted to other 
regions, such as supplementary motor area); 
furthermore, these activity timecourses are greatest 
during motor learning and return to baseline for 
overlearned sequences. Thus, we infer that these 
regions are constituents of a network specialized 
for motor skill acquisition.

Several methods exist for applying connectivity 
analyses. The simplest is seed analysis, where one 
region’s timecourse is used as a regressor against 
which all other regions’ timecourses are correlated. 
Seed analyses produce statistical parametric maps 
indicating how strongly each region is correlated 
with the seed region. Seed analyses have been used 
widely in the functional connectivity literature, 
for example, to dissociate activity of Broca’s and 
Wernicke’s areas during overt speech, silent 
speech, and tongue movement.8 Seed analyses 
are by nature univariate; each analysis uses just 
one seed as a regressor. Multivariate connectivity 
analyses offer even richer interpretations, since 
these methods can incorporate two or more 
independent variables simultaneously. The 
subset of multivariate methods most commonly 
encountered in connectivity analyses includes 
component analyses, which seek to reduce the 
neural regions into networks that explain large 
percentages of the regions’ temporal variability. 
These methods include principal component 
analysis,9,10 partial least squares,11 and independent 
component analysis.12,13

The techniques described thus far characterize 
functional connectivity, the correlated activity 
among brain regions. A growing emphasis 
has been placed upon effective connectivity, the 
infl uences neural regions have upon each other. 
While functional connectivity assesses the strength 
of correlation between brain regions, effective 
connectivity determines the directionality of these 
infl uences. Structural equation modeling (SEM) is 
the method most frequently used to model effective 
connectivity. SEM infers plausible directional 
connections among variables based upon their 
observed covariance. Early work demonstrated 
modulation of acoustic pathways in rats during 
habituation,14 modulation of V5’s infl uence on 
posterior parietal cortex by prefrontal cortex during 
attention,15 and increasing infl uence of posterior 
parietal cortex upon posterior inferotemporal 
cortex during visuospatial learning.16

SEM is a confi rmatory statistical approach; it 
assesses how well a model fi ts a given dataset. 
Several exploratory adaptations of SEM have 
been proposed. One method exhaustively tests 
and ranks every possible model that can be 
generated for a given data set.17,18 Another method 
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initializes with zero paths and iteratively adds 
the path that would best improve model stability, 
continuing until including additional paths no 
longer signifi cantly improve model stability.19 A 
third exploratory approach seeks to fi nd consistent 
activations across subjects.20

Spontaneous fl uctuation in brain activity observed 
with fMRI (resting-state fMRI)

Motor studies of stroke patients in the MRI 
scanner present a number of practical problems.21 
The fi rst is unwanted head movement. Head 
motion causes errors in registration of voxel 
location to anatomic location, leading to both 
false-positive activation when there is task-
correlated head motion and false-negative 
activation due to random motion introducing 
increased spatial noise in the MRI signal.22 Another 
problem encountered in patients with stroke 
is mirror movements.21 These are involuntary 
movements of the contralateral homologous body 
part. Their presence complicates interpretation of 
imaging studies of motor recovery because they are 
associated with activation in contralesional motor 
cortex.23,24

One of the most promising paradigms in 
human neuroimaging is the study of slow 
(<0.1 Hz) fl uctuations in the fMRI blood oxygen 
level dependent (BOLD) signal. Strong temporal 
correlations among neural systems exist even 
in the absence of overt task. This spontaneous 
activity (i.e., resting state) refers to activity that 
is not attributable to specifi c inputs or outputs; it 
represents activity that is intrinsically generated 
by the brain. Although the physiological source 
of this spontaneous activity is unclear, it arises 
in functionally associated regions, for example, 
components of the motor network.25 Thus, this 
activity is thought to represent underlying neuronal 
activity within these networks. Evidence for the 
neuronal nature of the resting-state networks 
comes from studies that employ simultaneous 
fMRI and electroencephalograms (EEGs),26,27 from 
the observations of altered connectivity caused by 
neurological diseases,28 and from the existence of 
homologous resting-state networks in nonhuman 
primates that overlap with neuroanatomically 
defi ned systems.29 For a complete description 

of the theoretical framework for studying 
spontaneous activity and methodology, see reviews 
by Buckner et al30 and Fox and Raichle.31

An application of resting-state BOLD that is 
likely to yield good results is the comparison 
of correlation patterns between groups. Task-
based analyses face many confounds, including 
task-induced head motion, differences in task 
performance, task-correlated head movements, 
and different strategies for task completion. Task-
based comparisons of movement-impaired stroke 
populations to control groups, or assessment of 
the neural correlates of functional recovery after 
stroke, face the additional confounds of mirror 
movements and differences in task difficulty 
due to severity of impairment. There are fewer 
assumptions needed when analyzing resting-state 
data, which makes group comparison much less 
problematic. Additionally, as there is no task, 
studies can be conducted in people unwilling or 
unable to adhere to task paradigms. Resting-state 
data have been shown to be remarkably consistent 
across sessions in healthy individuals,32,33 implying 
that network analysis would be useful in following 
longitudinal treatment-related manipulations. 
Furthermore, resting-state networks appear to 
be little changed by an intervening cognitive task 
in the course of a single scan session.34 Recently, 
pathological disturbances in intrinsic resting-
state activity have been related to the severity 
of disease35–37 and the recovery from functional 
defi cits in stroke.35

In addition to predicting how brain regions will 
respond to a task, spatial patterns of spontaneous 
activity may also predict an individual’s task 
performance or behavior. Specifi cally, individual 
differences in the spatial topography of spontaneous 
activity have been shown to correspond to 
individual differences in prescan anxiety38 and 
performance on working memory tasks.39 The idea 
that an individual’s spontaneous brain activity may 
predict that person’s behavior for a particular task 
promises to be a major focus for future research.

Previous studies have shown that major human 
cortical networks exhibit correlated spontaneous 
activity while people are at rest.29,40,41 Networks 
subserving vision, motor control, and hearing 
show robust resting-state functional connectivity 
in healthy adults and even infants.42 Vincent 
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to ipsilesional M1 that was commensurate with 
extent of motor task impairment.

In the present study, we used an exploratory 
adaptation of SEM to evaluate changes in effective 
connectivity in the motor network of stroke sur-
vivors with rehabilitative therapy. Given the fi ndings 
of Grefkes et al, we hypothesize that a lesion caused 
by an event such as a stroke would signifi cantly 
diminish the driving infl uences of the affected 
hemisphere. Thus, the stroke-affected hemisphere 
would be overly reliant upon (and thus heavily 
infl uenced by) the unaffected hemisphere prior to 
therapy. But as the patient recovers motor function 
in the affected hand, we expect the stroke-affected 
hemisphere to reassert itself in the motor network. 
As a result, we expect the affected hemisphere to 
be less dependent upon the unaffected hemisphere 
following therapy. Specifi cally, we anticipate a 
reversal of the trends previously reported by 
Grefkes et al, as the brain recovers to more closely 
resemble that of healthy controls.

Methods

Patients

Accelerated Skill Acquisition Program (ASAP) 
group. We studied fi ve right-handed patients 
(mean age 55 years) with recent strokes as 
confirmed by MRI or computed tomography 
(CT). Three patients had right hemiparesis due to 
infarctions located in the basal ganglia, pons, or 
thalamus. The other two patients presented with 
left hemiparesis resulting from a thalamic infarct or 
hemorrhage into the posterior limb of the internal 
capsule (PLIC). Stroke latency ranged from 34 to 
55 days before baseline evaluation. Demographic 
data for this cohort are reported in Table 1. Each 
participant gave informed consent. The study was 
approved by the institutional review boards at each 
participating site (National Rehabilitation Hospital 
[NRH], Emory University [E], and the University 
of Southern California [USC]).

UCC patient. An additional right-handed patient 
(64 years) was recruited as a usual-and-customary-
care control (UCC). This patient had a left thalamic 
stroke. This patient’s demographic data are also 
reported in Table 1.

and colleagues29 provided the fi rst evidence that 
such activity is neither restricted to the human 
brain nor tied to a conscious state. Their fi ndings 
suggest that fl uctuations of spontaneous activity 
across anatomically interconnected brain regions 
constitute a fundamental principle of brain 
organization. Such an interpretation is supported 
by the fact that organized patterns of brain activity 
are present in both humans and nonhuman 
primates. As to the functional signifi cance of 
correlated signal fl uctuations, it may be that they 
maintain the integrity of networks by reinforcing 
the synaptic connections between neurons that 
are essential for network operations in the awake 
state. Indeed, in stroke patients, the effective 
connectivity of a brain network has been found to 
break down when one of its parts is damaged.35 
This loss of connectivity seemed to be correlated 
with the patients’ behavioral impairments.

The resting-state networks discussed thus far 
should not be confused with the default mode 
network (DMN), which has received increased 
attention in recent years.43,44 DMN principally 
includes the posterior cingulate, bilateral parietal 
lobe, ventromedial prefrontal cortex, and subgenual 
cingulate. The precise cognitive function of the 
DMN is unknown, although it has been speculated 
as being engaged in self-referential activities such 
as daydreaming or rumination.43 DMN is anti-
correlated with cognitively demanding tasks, such 
as a visuospatial working memory task.44 DMN also 
shows strong functional connectivity during resting-
state scans. We urge readers not to mistake the DMN, 
which shows strong correlation during rest, with 
networks subserving other cognitive functions (such 
as motor control, vision, and audition), which also 
show correlated spontaneous activity during rest.

Assessing effective connectivity in stroke recovery

Only one other study has investigated changes 
in effective connectivity with stroke. Relative to 
healthy controls, stroke survivors have previously 
demonstrated disrupted motor network effective 
connectivity. Grefkes et al45 showed a diminished 
infl uence of supplementary motor area (SMA) upon 
ipsilesional primary motor area (M1) independent 
of task performance. They also reported an 
increased inhibitory infl uence of contralesional 
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Table 1. Demographic and behavioral data

Subject
Patient 1 
(ASAP)

Patient 2 
(ASAP)

Patient 3 
(ASAP)

Patient 4 
(ASAP)

Patient 5 
(ASAP)

Patient 6 
(UCC)

Medical
CVA lesion site (L/R) L-CVA, pons, 

ischemic
R-CVA, PLIC, 
hemorrhagic

L-CVA basal 
ganglia

R-CVA medulla, 
ischemic

L-CVA, thalamus, 
ischemic

L-thalamic, 
hemorrhage

Dominant hand more 
affected

Yes No Yes No Yes Yes

Comorbidities/past 
medical history/
medications

HTN, HLP/
depression/
metoprolol, Zocor, 
hydralazine, Diovan, 
amlodipine, Lexapro

HTN, DM, 
HLP/none/
Novolin, 
lisinopril, 
Zocor, 
gemfi brozil

HTN, obesity/
ETOH abuse/
aspirin, 
Plavix, Lipitor, 
lisinopril

Type II DM, 
HTN, HNP/C3-4 
anterior midline 
with mild cord 
compression/
none

None/gender 
reassignment 
2001; trauma 
with coma; 
reconstruction 
1985/Evamist

DM, HTN, 
CAD/none/
Lexapro, 
NovoLog, 
Altace, 
Lantus, Zocor, 
Glucophage

Demographics

Race/ethnicity African American Asian 
American

Latin 
American

Caucasian 
American

Caucasian 
American

Caucasian 
American

Age 49 68 55 52 52 64
Gender Male Male Male Female Female Male
Marital status S M M S Domestic partner M
Timing
Length of hospital stay, 
days

27 18 WHC 17 
NRH 8

23 28 27

Screen, days since stroke 
onset

10 13 25 21 27 20

Baseline evaluation, days 
since onset

55 38 35 36 34 64

Post evaluation 85 68 62 58 55 83
Screen
Orpington Prognostic
 Scale

10 9 NT 2.4 2.8 NT

NIHSS 1 4 6 4 5 4
MMSE 29 NA NT NT NT —
Barthel Index prior to 
stroke

100 100 100 NT NT 100

Evaluation
Treatment ASAP ASAP ASAP ASAP ASAP UCC
Fugl-Meyer baseline 42 39 54 34 53 37
Fugl-Meyer post 
intervention

44 43 59 47 56 41

Baseline WMFT affected, 
average time in seconds

21.29 28.69 5.28 4.499 4.25 5.31

Post WMFT affected, 
average time in seconds

4.53 2.98 3.81 2.652 3.37 3.82

SIS hand, sum (average) 8 (1.6) 5 (1) 17 (3) 9 19 19
Brief self-effi cacy (initial/
fi nal)

1/5.5 5/9 5/8 NT NT NT

Baseline CAHM, average 26 6.25 66.75 NT NT 32.5
Postintervention CAHM, 
average

51 47 70 NT NT 71

PHQ-9 baseline 13 NT NT NT NT 2
PHQ-9 post intervention 12 NT NT NT NT 3

Note: ASAP = Accelerated Skill Acquisition Program; UCC = usual-and-customary control; PLIC = posterior limb of internal capsule; 
HTN = hypertension; HLP = hyperlipoproteinemia; DM = diabetes mellitus; S = single; M = married; WHC = Washington Health Center; 
NRH = National Rehabilitation Hospital; NT = not tested; NIHSS = National Institutes of Health Stroke Scale; NA = not available; MMSE = Mini 
Mental State Examination; WMFT = Wolf Motor Function Test; SIS = Stroke Impact Scale; CAHM = Confi dence in Arm and Hand Movements 
Scale; PHQ-9 = 9-item Patient Health Questionnaire.
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Control. Participants had no therapy or task 
practice between scanning sessions.

Magnetic resonance imaging

Subjects received two MRI sessions (one before 
and one after therapy). Each session included 
two resting-state fMRI (rs-fMRI) scans (TR/TE/
FA = 1500ms/30ms/90°, 200 time points [5 min 
each], resolution = 3.4 × 3.4 × 5 mm3, 21 axial 
slices) on a Siemens 3.0T Magnetom Trio scanner 
(Siemens Medical Solutions, USA). Each rs-fMRI 
scan was preceded by a 150-s motor task functional 
scan. The motor task scans used a block design 
paradigm consisting of alternating 30-s periods 
of rest and performance of an isometric precision 
grip task. All functional data sets underwent 
motion correction, slice timing correction, scaling 
to percent signal change, bandpass temporal 
fi ltering (0.009–0.08 Hz), and then transformation 
to the ICBM452 anatomic brain template using 
previously described methods.58

Region of interest (ROI) defi nitions are illustrated 
in Figure 1. First, the left hemisphere primary 
motor area was identifi ed by its distinctive “hand 
knob” anatomic landmark (indicated by the arrow 
and contour tracing in Figure 1A).6 A 6-mm radius 
sphere was placed atop the hand knob and used as 
a seed for generating a correlation map using the 
rs-fMRI scans (Figure 1B). This correlation map 
guided the placement of 5 ROIs (also using 6-mm 
radius spheres; see Figure 1C): left and right M1 
(LM1, RM1), left and right lateral dorsal premotor 
(LPM, RPM), and supplementary motor area 
(SMA). For all subjects, the seed maps generated for 
session 1 overlapped those generated for session 2. 
Thus, the same ROIs (generated for session 1) were 
used for both session 1 and session 2 to ensure 
consistency in data analysis across sessions.

ROI placement was performed by an investigator 
(G.A.J.) blind to which hemisphere was affected by 
stroke. As such, the distinction of left and right 
was necessary for anatomic defi nition. For clarity, 
results henceforth will be discussed only in terms 
of affected or unaffected hemisphere. Premotor and 
M1 ROIs in the hemisphere affected by the stroke 
will be referred to as a-PM and a-M1 respectively, 
while premotor and M1 ROIs in the unaffected 
hemisphere will be referred to as u-PM and u-M1.

Control group. Two right-handed subjects 
(mean age 38 years) were recruited as a healthy 
control group. These subjects had no history of 
cerebrovascular events.

Behavioral assessments

Comparability and standardization of data 
collection techniques across all three sites were 
ensured prior to enrollment of subjects. Each 
participant underwent a detailed behavioral 
assessment prior to and immediately following 
3 weeks of physical therapy.46 Each person was 
prescreened using the Orpington Prognostic 
Scale,47 the National Institutes of Health Stroke 
Scale (NIHSS),48 the Mini-Mental State Examination 
(MMSE),49 and the Barthel Index.50 Primary outcome 
measures included the Wolf Motor Function Test 
(WMFT)51 and the upper extremity portion of the 
Fugl-Meyer.52 Secondary measures included the 
Stroke Impact Scale (SIS),53 the 9-item self-report 
Patient Health Questionnaire-9,54,55 and the 20-item 
Confi dence in Arm and Hand Movements scale 
(CAHM), a measure of self-effi cacy.

Rehabilitation intervention

ASAP. Task-specifi c functional training focused 
on the systematic and repetitive practice of tasks 
that could be performed with the level of available 
voluntary arm function. Tasks were progressively 
arranged and customized to account for any 
unique proximal-to-distal recovery patterns of 
reaching and grasping actions. All tasks were 
designed to be standard and repeatable and 
to have some functional goal (e.g., pointing, 
grasping, and stirring). The principles of motor 
learning were applied as the physical therapists 
systematically provided knowledge of results and 
progressed task diffi culty to keep the participants 
challenged, motivated, and engaged.56 Tasks were 
ordered randomly during practice to facilitate 
learning and to mimic real-world activities.57 
Therapy was provided at a dose of 2 hours a day, 
5 days a week for 3 weeks (30 hours). Therapy 
was administered one-on-one by an experienced 
clinical therapist.

UCC. Patient underwent physician-prescribed 
rehabilitation therapy.
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parsimonious goodness-of-fi t (PGFI) and allowed 
more paths to be estimated.

Results

Behavioral data

Table 1 shows pre- and posttreatment scores in 
functional performance on the primary outcome 
measures. The mean change (± SD) on the WMFT 
was 51.6 ± 30.8, and the Fugl-Meyer affected arm 
score was 13.6 ± 13.9. Large improvements in 
scores of self-effi cacy (CAHM) were observed in 
three of fi ve patients. Quality of life measurements 
(SIS scores 11.6 ± 6.1) were recorded only at 
baseline.

Resting-state effective connectivity

All models generated by this exploratory SEM 
approach met statistical criteria for validity. All 
models had a standardized root-mean-square 
residual (stRMR) <0.02, root-mean-square error 
of approximation (RMSEA) <0.01, and adjusted 
goodness-of-fi t index (AGFI) ≥0.98.

For all fi ve ASAP patients, the infl uence of a-PM 
to u-PM increased after therapy (Figure 2). For 
ASAP-01, a-PM had a strong infl uence on u-PM 
before therapy (path coeffi cient of 0.55), but this 
infl uence increased (0.66) after therapy. ASAP-02 
showed a reversal in premotor infl uence, with 

Exploratory SEM was conducted using LISREL 
8.80 (SSI, Inc., Lincolnwood, Illinois, USA) as 
previously described.19 SEM generates linear 
equations describing relationships among the 
variables of interest (for this work, ROI activity 
timecourses). These relationships are often 
depicted as paths with arrows indicating the 
direction of infl uence and path coeffi cients refl ecting 
the strength of infl uence. The path coeffi cient 
of A to B indicates by how many standard 
deviation units B increases corresponding to an 
increase of 1 standard deviation units in A. For 
our exploratory adaptation, SMA was selected 
as an exogenous variable (i.e., node with only 
outputs to other nodes), thus serving as the 
network’s starting point, while both M1 nodes 
were constrained to only have outputs to each 
other, thus establishing a hierarchy of SMA to 
PM to M1 that has been well documented for 
motor execution and motor imagery.18,59 We 
used LISREL’s automatic model modification 
procedure, which began with no paths estimated 
and used the modification index to choose 
which path would best stabilize the model if 
estimated. The process iteratively estimated the 
paths until the improvement in model stability 
(as measured by decreases in the chi-squared 
value) was no longer signifi cant.19 Since the alpha 
(intercept) matrix was consistently near zero 
for all models, we fi xed alpha to zero to free up 
degrees of freedom. This improved each model’s 

Figure 1. Selection of regions of interest (ROIs). (A) Horizontal section of a T1 anatomic image of single 
patient’s brain following transformation to MNI space (z = 50 mm). Arrow and contour indicate the location 
of the left motor “hand knob.” (B) A correlation map using left M1 as a seed is shown overlaid atop the 
T1 anatomic image. The thresholded (0.3 ≤ r ≤ 1.0) correlation map guided ROI placement. (C) Five ROIs: 
supplementary motor area (SMA), left and right lateral premotor (LPM, RPM), and left and right primary 
motor (LM1, RM1) were defi ned as 6-mm radius spheres set atop the T1 anatomic image.
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three patients with the greatest change in WMFT 
scores (ASAP-01, ASAP-02, ASAP-04) also had 
the greatest change in infl uence of a-PM upon 
u-PM with therapy. Conversely, UCC-01 showed 
the opposite pattern: u-PM infl uenced a-PM 
both before and after therapy, with no reciprocal 
infl uence of a-PM upon u-PM.

For four patients, the infl uence of a-PM on a-M1 
increased after therapy. Three patients (ASAP-01, 
ASAP-03, UCC-01) showed no infl uence of a-PM 
on a-M1 pre therapy but strong infl uence post 
therapy. One patient (#2) showed a decreasing 
direct infl uence of a-PM on a-M1 pre to post 

u-PM driving a-PM before therapy (as exhibited 
by a path coeffi cient of 0.53) but a-PM driving 
u-PM afterwards (0.89). ASAP-03 was similar 
to patient 1, with a-PM’s infl uence on u-PM 
increasing (albeit marginally) after therapy. 
ASAP-04 exhibited no interaction between 
premotor cortices before therapy but a remarkably 
strong influence (0.96) of a-PM on u-PM 
afterwards. ASAP-05 showed an infl uence of SMA 
on all four ROIs pre therapy but no interregional 
infl uence; this changed post therapy, where a-PM 
and u-PM showed strongly reciprocating path 
coeffi cients indicative of high correlation. The 

Figure 2. Motor system network for each stroke survivor, before (session 1) and after (session 2) therapy. 
Shading indicates the hemisphere that is affected by stroke. SEM models are shown for each patient’s fi rst 
session (left) and second session (right) after therapy. The numbers above each line represent the path 
coeffi cients and are standardized measures of direct infl uence. Solid lines with arrows indicate direction 
of effective connectivity infl uence. LM1 = left primary motor cortex; RM1 = right primary motor cortex; 
LPM = left premotor cortex; RPM = premotor cortex; SMA = supplementary motor area.
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fi ndings are the fi rst to suggest that the increased 
effective connectivity from affected to unaffected 
PM is not merely a return to the bilaterality typically 
observed in the resting-state motor network,60 but 
rather refl ects functional reorganization of the motor 
network following stroke.

UCC-01 showed no increase of a-PM upon u-PM 
with therapy; u-PM infl uenced a-PM both pre and 
post therapy. Conversely, the infl uence of u-PM 
upon a-PM before therapy persisted after therapy. 
Yet UCC-01 had moderate behavioral improvement, 
suggesting that the influence of a-PM upon 
u-PM may be a therapy-specifi c neural correlate 
of functional recovery. Differing rehabilitative 
therapies may “retrain” the brain in different ways, 
thus inducing different neural plasticities. SEM 
could hence investigate how different therapies 
differentially reorganize neural connectivity, with 
unique paths serving as therapy-specifi c indicators 
of effi cacy. Although intriguing, such speculation 
requires further empirical evaluation.

A strong intrahemispheric infl uence of PM to 
M1 has been reported in normal populations.18,59 
Four patients in the current study showed 
increased influence of a-PM to a-M1 across 
sessions, including the two with greatest motor 
improvement. This increase is consistent with 
motor recovery, as it suggests a re-establishment 
of infl uences observed in unimpaired people. 
The changing role of SMA with stroke recovery is 
less clear. The two patients with greatest recovery 
showed a tendency for SMA to directly infl uence 
a-M1 pre therapy but to reroute to affect a-PM post 
therapy. Although this rerouting may refl ect neural 
plasticity with motor recovery, a larger sample is 
again needed to fully explore this relationship.

Modeling patients individually is a necessary 
step for understanding the heterogeneity of 
cortical activity during recovery of stroke 
survivors61 and for monitoring treatment effects 
in patients. Both the investigator (G.A.J.) and the 
algorithm were blind to which hemisphere was 
affected by stroke, yet the modeling approach 
consistently showed increased infl uence of a-PM 
on u-PM across all subjects. These results suggest 
recruitment of the unaffected hemisphere to aid 
the affected hemisphere, which is consistent with 
our hypothesis as well as previous fi ndings.62 
Additional factors (such as standardized changes 

therapy (–0.11 to 0) but an increased indirect 
infl uence (a-PM to u-PM to u-M1 to a-M1; total 
indirect infl uence 0.55), resulting in a net increase. 
Only one patient (#4) had decreased infl uence of 
a-PM on a-M1 (0.26 to 0).

The two patients with greatest behavioral 
improvement (ASAP-01 and ASAP-02) were 
also the only two patients showing an increased 
infl uence of SMA on a-PM after therapy. These 
patients showed no direct influence of SMA 
on a-M1 post therapy, that is, SMA could only 
infl uence a-M1 indirectly through a-PM. Three 
patients (ASAP-04, ASAP-05, UCC-01) showed 
the opposite trend; SMA on a-PM decreased with 
time, and SMA had a direct connection to a-M1 
post therapy. The patient with the least behavioral 
improvement (ASAP-03) had no change in SMA’s 
infl uence on a-PM with therapy and no direct 
infl uence of SMA upon a-M1 pre or post therapy.

The control participants had consistent infl uence 
of SMA upon LPM and LPM upon RPM, for 
both sessions. Both subjects were right-handed, 
suggesting an infl uence of the dominant (left) 
hemisphere over the nondominant (right) 
hemisphere.

Each session’s resting scans were preceded by 
(and thus separated by) the motor task scan, 
so that the task between resting scans may 
have induced motor network priming. This 
was ruled out by a paired sample t test, which 
found no signifi cant difference between Fisher 
z-transformed correlations on the fi rst and second 
resting-state scans (p < .05) for either pre- or 
posttherapy sessions.

Discussion

We have documented longitudinal changes 
in effective connectivity bilaterally in the motor 
network, corresponding with improved motor 
function of the stroke-affected upper limb following 
therapy. All ASAP patients demonstrated increased 
effective connectivity from a-PM to u-PM, with 
the magnitude of connectivity increase being 
proportional to behavioral measures of recovery. The 
reciprocal relationship (infl uence from u-PM to a-PM) 
increased only for patient 5; for all other patients, 
this infl uence remained at zero (patients 1, 3, 4) 
or decreased (patient 2). To our knowledge, these 
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within individual patients. Since these models are 
generated for individuals, they allow longitudinal 
assessment of patient recovery. Furthermore, 
specifi c network paths appear to correspond with 
behavioral measures of stroke recovery and are 
thus of potential prognostic value. Future effective 
connectivity analyses may identify key network 
paths that are critical for successful rehabilitation. 
In these instances, artifi cially restoring connectivity 
between these regions (e.g., with transcranial 
magnetic stimulation), independent of or in 
conjunction with rehabilitation therapy, may 
facilitate motor skill restoration. Taking into account 
our fi ndings of selective changes of resting-state 
networks in stroke, we suggest that resting-state 
fMRI and especially resting-state network analysis 
constitute very promising tools for the functional 
characterization of functional brain disorders, 
for intergroup comparisons, and possibly with 
some potential for assessing effective connectivity 
on a single subject level–all of which may have 
important implications for stroke rehabilitation.
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